Probability and Statistics - ENSAE Example of Entrance Exam

PLEASE DO NOT TURN THIS PAGE OR START THE EXAM UNTIL YOU ARE INSTRUCTED TO DO SO.

- 1. Exam duration: 1.5 hrs
- 2. This is a closed book, closed notes exam. Calculators are permitted.
- 3. Make sure to mark your name at the top of this page and on the first page of all the answer sheets you use.
- 4. Show detailed answers to receive full credit unless instructed otherwise.

Problem 1	4	
Problem 2	3	
Problem 3	6	
Problem 4	7	
TOTAL	20	

Problem 1. (4 pts)

Let U and V be two i.i.d. uniform random variables in [0, 1]. (a) Determine the distributions of 2U and U + V.

- (b) Let $X = \min(U, V)$ and $Y = \max(U, V)$.
 - 1. Find the distributions of X and Y.
 - 2. Show that the pair (X, Y) has a density and compute it.

Problem 2. (3 pts)

Recall that for all $\lambda > 0$, the Poisson distribution with parameter λ is the distribution of an integer valued random variable X such that

$$\mathbb{P}[X=k] = C(\lambda)\frac{\lambda^k}{k!}, \quad \forall k \in \{0, 1, 2, \ldots\}$$

where $C(\lambda)$ is a positive constant.

- (a) Show that $C(\lambda) = e^{-\lambda}$.
- (b) For each positive integer n, let X_n be a random variable with the Poisson distribution with parameter 1/n. Show that for any sequence $(a_n)_{n\geq 1}$ of positive numbers diverging to $+\infty$, $a_n X_n$ goes to zero in probability.

Problem 3. (6 pts)

Let $\theta > 0$ and X_1, X_2, \ldots be i.i.d. random variables with the uniform distribution on $[0, \theta]$. For all positive integers n, let $M_n = \max(X_1, \ldots, X_n)$.

- (a) Compute the cumulative distribution function of $n(\theta M_n)$.
- (b) Prove that M_n goes to θ in probability.

- (c) Show that $n(\theta M_n)$ converges in distribution, and identify the limiting distribution.
- (d) Using the previous questions, compute one confidence interval for θ with non-asymptotic level 5%, and one confidence interval for θ with asymptotic level 5%.

Problem 4. (7 pts)

Let X be a non-negative random variable. Assume that X is *lacking memory*, that is, $\mathbb{P}[X > t] > 0$ for all t > 0 and

$$\mathbb{P}[X > s + t | X > s] = \mathbb{P}[X > t],$$

for all s, t > 0. Set $G(t) = \mathbb{P}[X > t]$, for all $t \ge 0$.

- (a) Show that G is non-increasing and right-continuous (i.e., for all $t \ge 0$, and for all non-increasing sequences $(t_n)_{n\ge 1}$ converging to $t, G(t_n) \xrightarrow[n\to\infty]{} G(t)$).
- (b) Show that for all $s, t \ge 0$, G(s+t) = G(s)G(t).
- (c) Conclude that for all $s \ge 0$ and for all non-negative integers $k, G(ks) = G(s)^k$.
- (d) Show that for all positive integers q, $G(1/q) = G(1)^{1/q}$.
- (e) Conclude that for all non-negative rational number $r, G(r) = G(1)^r$.
- (f) Prove that for all non-negative real numbers $t, G(t) = G(1)^t$.
- (g) What is the distribution of X?